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ABSTRACT 

 
We theoretically investigated acoustic phonon spectrum and phonon group velocities in three-layered 
heterostructures with the nanoscale core layer thickness. The equations of motion for different phonon 
polarizations in the anisotropic medium approximation, which allowed us to include specifics of the 
wurtzite lattice were derived. Basing on our model we calculated phonon density of states and phonon 
group velocity. It has been demonstrated that the phonon group velocity in the core layer can be made 
higher or lower than in corresponding bulk material by a proper selection of the cladding material 
thickness.  
 
1. INTRODUCTION 
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Acoustic phonons in bulk semiconductors are characterized by nearly linear dispersion 

relation near the Brillouin zone center, wide continuous spectral range and high population densities 
even at low temperature. In semiconductor heterostructures and nanostructures with feature size W 
smaller than the phonon mean free path Λ, the acoustic phonon spectrum can undergo strong 
modification [1]. This modification is particularly strong when the structure feature size becomes 
much smaller than the phonon mean free path, W<<Λ, and approaches the scale of the dominant 
phonon wavelength λd ≅ 1.48VS h /kBT [2]. Here kB is the Boltzmann constant, T is the absolute 
temperature, h  is the Plank’s constant, and VS is the sound velocity.  For many crystalline materials 
this scale is on the order of nanometer at room temperature. 
  The investigation of acoustic phonon spectra in the context of layered structures dates back to 
as early as half a century ago. Theoretically, the folded acoustic phonons in layered medium have been 
studied by Rytov [3]. Later, the folded phonons have been observed experimentally in quantum well 
superlattices (QWS) [4]. Many theoretical results for quantized phonons in free-standing films, 
nanowires and spherical quantum dots were obtained using the analogy with acoustics and classical 
mechanics [5-7]. Dispersion of dilatational, flexural and shear vibrational modes in thin films has been 
described in Ref. [5], dispersion of hybrid thickness and width modes has been obtained in Ref. [6]. 
More recently, phonon dispersion in quantum dot superlattices  (QDS) has been calculated taking into 
account elastic constants of both dot and barrier material [8]. The cited above results for confined 
phonons in thin films and nanowires were obtained under the assumption of the free-surface, e.g. free 
standing, or clamped surface boundary conditions [5-7].  The important question for phonon transport 
in the plane of a thin film or along the axis of a nanowire, which has not been properly addressed yet, 
is the effect of the surrounding material (matrix, barrier, or cladding) on acoustic phonon spectra of 
ultra-thin films and heterostructures. In this paper we address this issue and investigate acoustic 
phonon spectrum of a three-layered semiconductor structure with ultra-thin inside layer and cladding 
(barrier) material. We carry out our calculations for wurtzite AlN/GaN/AlN heterostructures. The rest 
of the paper is organized as follows. In section 2 we derive the equations of motion for the elastic 
vibrations in the three-layered structure. Results and discussion are presented in section 3.  We give 
our conclusions in section 4. 
 
 
2. THEORETICAL MODEL 

 
In order to investigate the role of the cladding material on acoustic phonon spectrum of ultra-

thin films we consider a free-standing single thin film, e.g. slab, and a free-standing three-layered 
structure, e.g. double heterostructure. Both structures have a nanometer feature size along the growth 
direction. A schematic view of the slab and three-layered structure are shown in the insets to Fig. 1 
and Fig.3, respectively. The axis X1 and axis X2 in the Cartesian coordinate system are in the plane of 
the layers while the axis X3 is directed perpendicular to the layer surfaces. The layer thickness is 
denoted by di (i=1,2,3). As an example system we consider AlN/GaN/AlN heterostructure. GaN and 
related compounds crystallize in wurtzite (hexagonal) or zinc blende (cubic) lattice. Here we consider 
wurtzite GaN as more technologically important. It is further assumed that the layers have hexagonal 
symmetry with a crystallographic axis c directed along a coordinate axis X3.  

The equation of motion for elastic vibrations in an anisotropic medium can be written as  
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taking derivatives in Eq. (1), one has to take into account that the system is non-uniform along the X3 
axis. The elastic modules are the piece-wise functions of 3x : 
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                                            )( 3xcc mikjmikj =  .                
(2) 
To reduce the number of subscript indexes in the coefficients mikjc , we adopt the two-index notations 
according to the prescription: 

661212;552323;441313;131133;121122;333333;222222;111111 →→→→→→→→
. 
In crystals with hexagonal symmetry the following equalities are valid:  

      446612124423231313 ; cccccc ≠=== .                        
(3) 

Thus, we have six independent elastic constants to characterize the material. An application of the 
anisotropic continuum model allows us to explicitly include the specifics of lattice structure of wurtzite 
crystals. The equations of motion obtained in anisotropic medium approximation with such selection of 
the elastic constants will be completely different from the equations of motion in the isotropic elastic 
medium approximation or anisotropic medium approximation for cubic crystals. The differences start 
with the vibration eigenmode classification.     

  In our work we use classification of possible phonon polarizations on potential, solenoidal 
and shear [3]. The shear polarization can be distinguished from the others using the following 
definition 
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The axis X1 is assumed to be along the propagation direction of the acoustic waves. Since the three-
layered structure is homogeneous in the plane (X1, X2), we look for the solution of Eq. (4) in the 
following form 

          )(
32312

1)(),,( kxtiexutxxU −= ω ,                                            
(5) 

where u2 is the amplitude of the traveling wave, ω is the phonon frequency and k is the phonon wave 
vector. By substituting Eq. (5) to Eq. (4) and taking into account Eqs. (2-3), one can turn the partial 
differential equation (4) into an ordinary second-order differential equation  
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The displacement vector in the plane (X1, X2) can be represented by the sum of potential 

),,( 31 txxur and solenoidal ),,( 31 txxvr displacement vectors 

                                        ),,(),,(),,( 313131 txxvtxxutxxU rrr
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(7) 
The potential and solenoidal displacements are defined by the conditions: 0)( =ucurl r  and 

0)( =vdiv r
, correspondingly. From these conditions we obtain the coupling equations for the first and 

third components of the vectors ),,( 31 txxur and ),,( 31 txxvr , which are given as 
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Using the same approach as in the case of shear waves ),,( 312 txxU , we look for the solutions for 

),,( 311 txxu and ),,( 313 txxv  in the following form 

,)(),,( )(
31311

1kxtiexutxxu −= ω )(
33313

1)(),,( kxtiexvtxxv −= ω .             
(9) 

Substituting Eq. (9) in Eq. (1) and taking in consideration the coupling conditions (8), we obtain the 
following equations for )( 31 xu  and )( 33 xv :   
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From the solutions of Eqs. (10) and (11) we obtain the components 1u and 3v . The 

components 3u and 1v  are found from the coupling condition: 
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The external surfaces of the three-layered structure are assumed to be free. As a result, the force 
components along all coordinate axes equal to zero, e.g., 0321 === PPP , where kiki nP σ= , and nr  
is the vector normal to the surfaces of the structure nr =(0,0,n3). From here we obtain that   
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(12a) In Eq. (12a) the boundary conditions are applied to the total displacement vector 
vuU rrr

+= .  
According to the connections between 3u  and 1u , 1v  and 3v  we can suppose that components 1u  and 

3v  are real, while components 3u  and 1v  are imaginary. Separating in equations (12a) real and 
imaginary parts we obtain:     

                                   31
3 1

3 1
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(12b)                                                                                                                                     
It is seen, that this way of   separation of components iU on imaginary and real parts gives the 
independent reflection of potential and solenoid waves from the structure boundaries 

1 1 3 3;U u U v= = . 
Note, that representation of boundary conditions in this form is useful for consideration potential and 
solenoidal wave features due to the inhomogeneity of structure. The mixing of potential and solenoid 
vibrations at reflection from boundaries will be considered in another paper.  
 
3. RESULTS AND DISCUSSION 

 
To obtain the vibrational spectrum, e.g. phonon dispersion, of the three-layered structure we 

solve differential equations (6, 10-11) subject to the boundary conditions of Eq. (12b) using the finite 
difference method.  The calculations are performed for each value of the phonon wave vector k from 
the interval    k∈(0, π/a), where a is the lattice constant in the plane (X1, X2). Since we are interested in 
the properties of ultra thin films (quantum wells), we assume that the structure is non-relaxed and, 
thus, the lattice constant is the same for both the thin film and barrier materials. The phonon dispersion 
is calculated for all three polarizations: potential, solenoidal, and shear. Due to the fact that the 
obtained results (in our case of independent potential and solenoidal polarizations) are qualitatively 
similar for these polarizations, in this paper we mainly discuss the potential polarization. Material 
parameters used in our simulations have been taken from Refs. [9-13]. 

In order to carry out model validation and to have reference curves for comparison with 
previously published results [5] we, first, calculate phonon dispersion for a slab made out of a well-
known material such as GaAs. Fig. 1 shows the dispersion relation )(kp

nωh  for the potential phonon 
polarization in the 
 slab of GaAs with the width d=10 nm. 
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One can see from this figure that (i) the phonon 
energy levels are equidistant at the zone center k = 
0; (ii) the phonon branches with n = 1, 2, … are 
weakly dispersive in the vicinity of k = 0, and the 
dispersion curves can be approximated by the 
functional dependences of the type: 

)( 2
0 knn αωω += hh , where α > 0. We refer to 

these phonon branches as quasi-optical since they 
all have cut-off frequencies ωn0≠0. 
The dispersion of these phonon branches differs 
from that of the optical bulk-like phonons only by 
the sign of α and typical values of the cut-off 
frequencies. The interval in k space, with the 
characteristic weak functional dependence of 

)(,, kshslp
nωh , increases with the increasing mode 

number n. Although not shown in the figure, there 
are potential, solenoidal and shear polarization 
bulk-like modes with the nearly linear dispersion 
law: kvk shslpshslp hh ,,

0
,,

0 )( =ω , where shslpv ,,
0  is 

the velocity of phonons for n = 0.  
The characteristic features of potential polarization can be easily seen on the plots of the phonon 

group velocity as a function of the wave vector k, which is given as 

                                               )()( ,,,, k
dk
dkv shslp

n
shslp

n ω=                                                                     

(13) 
Here the superscript denotes the polarization type, while the subscript n is used to enumerate the 
modes of a given polarization. We recalculate phonon dispersion for potential polarization in the slab 
made out of GaN material. Using the above expression we then calculate the group velocity for each 
mode. The group velocity for a set of potential polarization modes in GaN slab of the thickness d=6 
nm is shown in Fig. 2.  
The horizontal straight line in this figure indicates the phonon (sound) velocity in GaN for the 
longitudinal acoustic (LA) modes.  
 

 
 
 
 
Fig.2. Phonon group velocities as the functions of 
the phonon wave vector for the potential 
polarization. Results are shown for 6.0 nm thick 
wurtzite GaN slab. Longitudinal sound velocity in 
bulk GaN is indicated with straight line.   
 

 
 
 
 
 
 

After validating the model on the slab geometry, we have calculated phonon dispersion in the 
three-layered structure. Due to its practical importance, the prototype heterostructure investigated by 
us is AlN/GaN/AlN. Fig. 3 (a-b) shows the dispersion relation )(kp

nωh  for two three-layered 
AlN/GaN/AlN heterostructures.  
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Fig. 3. Energy dispersion of the potential acoustic phonon modes in a three-layered 
 heterostructure AlN/GaN/AlN. The results are shown for (a) the “thin core-layer” 
structure type I with the cladding layer thickness d1=d3=2.5 nm and the core layer 
thickness d2=1.0 nm; as well as for (b) the “thick core-layer” structure type II with 
the cladding layer thickness d1=d3=1.0 nm and the core layer thickness d2=4.0 nm. 
Inset shows the geometry of the three-layered structure. 

 
The upper panel (Fig. 3 (a)) corresponds to the type I structure with dimensions 2.5 nm / 1 nm / 

2.5 nm, while the  lower panel (Fig. 3 (b)) corresponds to the type II structure with dimensions 1 nm / 
4 nm /1 nm. To elucidate the effect of cladding material, we have chosen the thickness of the core 
layer of the type I (type II) structure to be thinner (thicker) than the cladding layer.  The first 
observation from Fig. 3 (a-b) is that the equidistance of the phonon energy levels is slightly broken. 
Although as in the case of a slab the branches with modal number 0n =  describe the quasi bulk-like 
phonon modes with nearly linear dispersion relation. The influence of the cladding layers in this 
double heterostructure geometry on phonon spectra is manifested via more complicated behavior of 
the dispersion curves (compare Fig. 3 and Fig. 1).  

The difference in the dispersion and the effect of the cladding are much more pronounced on 
the plots of the phonon group velocities. Fig. 4 (a-b) shows the phonon group velocities )(kv p

n  as the 
function of the phonon wave vector k.   

 
 

Fig. 4. Phonon group velocities as the functions of the phonon wave vector for the potential acoustic 

phonon modes in a three-layered heterostructure AlN/GaN/AlN. The results are shown for (a) the 
structure type I with the same dimensions as in the previous figure; and (b) the structure type II with 
the same dimensions as in the previous figure. Longitudinal sound velocities in bulk GaN and AlN 
are indicated with straight lines. 

 
Unlike the velocities for the potential modes in the slab structure (see Fig. 2), the velocities 

)(kv p
n  in these double heterostructures (three-layered structures) become non-monotonic with 
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maximums seen in all curves. It is interesting to note the behavior of the group velocity )(0 kv p  for 
n=0 mode. In the thin GaN layer in both structures this velocity is larger than the group velocity vb in 
bulk GaN for small values of k but it becomes smaller than the bulk GaN velocity for large values of k. 
The increase in the group velocity for the lowest phonon mode in the three-layered structure compared 
to bulk is explained by the effect of the barrier (cladding) material AlN, which has higher sound 
velocity compared to GaN.  The increase in the group velocity is higher in Fig. 4 (a) than that in Fig. 4 
(b) since in the first case the cladding material layer is thicker than the GaN core layer. 

In both structures, with thin GaN layer (a) and with thick GaN layer (b), the velocities for all 
modes (n≠0) tend to zero for the phonon wave vector 0→k , and remain smaller than the bulk 
velocity vb in a wide range of k values. For small values of k, the group velocities for modes (n≠0) 
decrease with increasing mode number, e.g. ).()( ,

1
, kvkv slp

n
slp

n +>  But for large values of k, the 
functional dependence of the velocities differs strongly for specific structures. In the case of the thin-
GaN-layer structure (a), the influence of the cladding AlN layers is very pronounced and the phonon 
velocities tend to the bulk AlN sound velocity (at large k for large n). In the case of thick-GaN-layer 
(b), the velocities remain smaller than the bulk GaN sound velocity for all phonon branches with 

0≠n and for almost all values of k. 
The behavior of the phonon dispersion )(kp

nωh and group velocity )(kv p
n  is determined by 

the specifics of the potential displacement vectors in the layers of the structure. As an example, in Fig. 
5 (a-f) we show the components 1u and 3u  of the displacement vector in the three-layered (type I) 
structure with the core GaN layer (thickness d=1 nm) embedded into AlN cladding layers of thickness 
d=2.5 nm each. The structure dimensions are the same as those used for Fig. 4 (a).  

 
 
 
 
Fig. 5. Components of 
the displacement 
vector U1 and U3 as the 
functions of the 
coordinate x3 along the 
structure growth 
direction. The results 
are shown for three 
phonon modes n=0, 1, 
6  and three values of 
the phonon wave 
vector k=0.1 nm-1 
(solid line), 3.0 nm-1 
(dashed line),  
and 6.28 nm-1 (dashed-
dotted line). Straight 
vertical lines indicate 
the boundaries 
between the GaN core 
layer and AlN 
cladding layers. 

 
 

 
 
 
 
 
The displacements are shown for three values of the phonon wave vector: k=0.1 nm-1 (solid 

line), k=3.0 nm-1 (dashed line) and k=6.28 nm-1 (dashed-dotted line). For small values of k, the 
displacements of a bulk-like mode (n=0) are distributed almost uniformly among all three layers of the 
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structure although the total width of cladding layers is five times larger than the width of the core GaN 
layer. Therefore, the group velocity of this mode exceeds the sound velocity in bulk GaN (see Fig. 4 
(a)). With increasing k the displacements tend to concentrate in the core layer (see Fig. 5 (a-d)) unless 
the mode number is too large (see Fig. 5 (e-f)). When most of the displacement is in the core layer the 
sound velocity decreases and becomes smaller than that in bulk GaN. In this sense this case is 
analogous to the decrease of the phonon group velocity in a thin slab or quantum well [1]. The effect 
of “slowing the phonons” in the “softer” material embedded within “harder” material is pronounced 
for small mode numbers n and large phonon wave vectors k. The latter is clearly seen in Fig. 5 (c, d) 
for the mode n = 1. For small and intermediate values of k the displacements extend for all structure. 
The displacement vectors for modes with large n are not limited to the core layers (Fig. 5 (e-f)), and 
correspondingly are not slowed down (see modes n=4 and n=5 in Fig. 4 (a)). 

For calculation of different macroscopic characteristics of nanostructures, such as, for example, 
electrical and thermal conductivity, heat capacity, the knowledge of the spectral density of the phonon 
mode distribution, e.g. phonon density of states, is required. In the considered plane structures with 
very thin core layer the phonon wave vector is two-dimensional. Thus, the phonon density of states for 
each of the potential, solenoidal or shear polarizations with given mode number n is defined by the 
expression  

                                
ω

ωω
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dkkf
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nshslp
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(14) 
The total phonon density of states for all polarizations is obtained by a summation over all n  
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shslp fF )()( ,,,, ωω                                                                     

(15) 
The total phonon density of states )(,, ωshslpF  for the type I three-layered structure is presented 

in Fig. 6. 
For comparison, the phonon density of 

states for longitudinal polarizations in bulk GaN 
and AlN are also shown. For low phonon 
frequencies, the density of potential modes is 
lower than that of the bulk-like longitudinal 
modes in GaN but higher than that in bulk AlN. 
The oscillatory behavior of the density of states 
functions in the three-layered structure for each 
polarization is a manifestation of the phonon 
mode quantization and their quasi-optical nature 
(see Fig. 3). Local peaks in the density of states 
correspond to the onsets of new phonon branches 
when their cut-off frequencies are reached.  
Altering the phonon density of states in the three-
layered structure for low frequencies can lead to 
the significant change in the electron-phonon 
scattering rates particularly for low temperatures.   

The average phonon group velocity is an 
important characteristic that determines, for 
example, the lattice thermal conductivity of bulk 
semiconductors or nanostructures [1, 11]. We 
calculate the average phonon group velocity for 

each polarization as a velocity of a wave packet with the modes populated in accordance with the 
Bose-Einstein distribution function   
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where )(
T

n ωh
is the Bose-Einstein equilibrium distribution function for phonons. Fig. 7 shows the 

average phonon group velocity )(,, Tv shslp  as a function of temperature for the type I and type II 
structures.  

 
 
Fig. 7. Population averaged phonon group velocities as the functions of temperature for the structure type I (a); 
and structure type II (b). The results are shown for potential (solid line), solenoidal (dotted line), and shear 
(dashed line) phonon polarizations. Corresponding bulk velocities are indicated with straight lines. Note that the 
phonon group velocity in type I structure with very thin core layer is increased compared to bulk due to the 
effect of “thick” cladding layers. 
 
The results are presented for all three phonon polarizations: potential (solid line), solenoidal (dotted 
line), and shear (dashed line). The corresponding velocities in bulk GaN and AlN are also shown for 
comparison. In the type I structure (Fig. 7 (a)), the average velocity of the thermal phonon current is 
considerably higher than that in the bulk GaN but lower than that in the bulk AlN. Such velocity 
increase is explained by the influence of the cladding layer. In the type II structure the average 
velocity in the core GaN layer is lower than that in the bulk GaN. The latter is due to the fact that 
effect of the barrier here is less pronounced and the velocity change in the core GaN layer is mostly 
defined by the phonon mode quantization and flattening of the polarization branches (see Figs. 3 – 4). 
This is in line with the prediction of the significant decrease of the phonon group velocity in a free-
standing quantum well [1] and nanowire [14]. 

Our results demonstrate that it is possible to tune the velocity of the phonon flux in a 
semiconductor quantum well layer over a wide range of value. By proper selection of the material and 
width of the cladding layers one can either considerably increase or decrease the phonon group 
velocity in the core quantum well layer. 

 
4. CONCLUSIONS 
 

We have theoretically investigated phonon dispersion and phonon group velocity in 
AlN/GaN/AlN. The focus of this study was on understanding the effect of the cladding (barrier) layers 
on the population averaged phonon group velocity in such structures. The fact that phonon group 
velocity in heterostructures can be modulated bears important consequences for phonon heat transport 
and thermal management of electronic devices.    
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